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A COMPARISON O F  TWO MELTING-PRESSURE EQUATIONS 

CONSTRAINED TO THE TRIPLE POINT USING DATA FOR ELEVEN 

GASES AND THREE METALS 

Robert D. Goodwin and Lloyd A. Weber 

Parameters  have been determined by a ieast-squares 
method for the reduced Simon equation and for a new, 
empirical melting equation using data fo r  H2, D2, T2, Ne, 
Ar, Kr,  Xe, N 
equation, (P-Pt)/('lZ-Tt) = Aexp(-a/T) t B T ,  represents 
experimental data with essentially the same accuracy as 
the Simon equation. It provides a sensitive difference 
method for graphical examination of data. 

0 , GO2, HZO, Na, K, and Hg. The new 
2' 

# d r c c O R  

1. Introduction 

Experimental data for melting curves often have been represen- 

ted by the original Simon equation [Simon and Glatzel, 1929; Simon, 

Ruhemann, and Edwards, 19301 , 
C 

P = a t b T  ( 1 - 4  

with three parameters,  omitting the triple-point datum. Since a 

number of triple-point determinations now are available, it is 

appropriate to  establish the two parameters of the reduced Simon 

equation [Simon, 1937; 19531, 

P - P t = P 0 [(T/Tt)' - 1 ] 



as constrained to the triple point (subscript - t ), using a uniform cam- 

putational method based on relative, rather than absolute deviations 

for  all substances. 

Whereas (1) has been derived with certain assumptions from 

modern theory of solids [ Gilvarry, 1956; Glass,  1963; Salter, 1954; 

Voronel, 1948,. 19591, rea l  or apparent difficulties a r e  encountered 

in the accurate empirical representation of some data, e. g. [ Michels 

and Prins, 1962; Pistorius, Pistorius, Blakey, and Admiraal, 19631, 

and for some metals the theoretically derived relation 

c = (6y t 1 ) / ( 6 ~  - 2) 

(7 = Grueisen's constant) is not confirmed experimentally [Strong and 

Bundy, 19 59 ] . 
In view of these difficulties, we have at the same time examined 

further the empirical equation recently used for interpolation near the 

tr iple point of hydrogen [ Goodwin, 1962; Goodwin and Roder, 19631,  

where 

y = A exp (-a/T) t BT, 

y G (P - Pt)/(T - Tt). 

For this examination, substances other than low-boiling gases a r e  

included for which, however, the triple-points may not be accurately 

known. 

dependence of the Grueisen constants, not found in the assumptions 

of the latter equation of state. 

a small  temperature-dependence of these constants may be expected 

[ Gilvarry, 19561. 

It is  possible to deduce that (2)  implies a temperature- 

Gilvarry, however, has concluded that 

Figure 1 illustrates behavior of the experimental 

D2, N2, Ar., and C02. The small  2' 
function y with data for H - 
temperature-dependence of this function (as compared with the pressure 

2 



P) provides a direct  method for graphical examination of the relative 

deviations or  precision of a set  of data, prior to the tedious iterative 

determination of parameters either for (1) or  (2). 

Concerning helium, for which no triple-point exists , we merely 

note, for example, that for-( a/T)  << 0 at very low temperatures, (2)  

may be reduced to 

2 
P =  Pt - (BTt) T t BT (2-a) 

and that this form is the same as used by Mills, Grilly and Sydoriak 

(1961) near the melting pressure minimum for  He 

0.3 C T - < 0. 5"K, namely, 

3 
in the range 

- 
2 

P =  32.42 - 21.25 T f. 32. 20 T . 

Equation ( l) ,  on the other hand, clearly i s  monotonic, 

-2. Data and Commtational Method 

For each substance, the self-consistent data of but one investi- 

gator have been selected for  present purposes. 

data on hydrogen, deuterium, tritium, neon, nitrogen, and oxygen 

were generously given to us by Edward R. Grilly[ Mills and Grilly, 

1955; Mills and Grilly, 19561. Argon, on the other hand, has been 

selected for illustration using data of three investigators over a wide 

range of pressures  [ Bridgman, 1935; Lahr, and Eversole, 1962; and 

Michels and Prins,  19621. Further references to  experimental data 

a r e  given by authors cited here. Triple-point constants used for the 

present computations a re  given in table 1. 

atmospheres [ Hilsenrath, 19551 . 
a re  on the NBS 1955 low-temperature scale [ Goodwin and Roder, 19631. 

Original, unpublished 

All pressures  a r e  in 

Absolute temperatures below 80°K 

3 



Since relative, rather than absolute, e r r o r  is roughly constant 

in the experimental determination of melting pressures ,  the least- 

squares method (with trial variation of one parameter) has been 

applied to constant or  nearly constant forms of the above equations, 

-1 -a/T 
(P -P) / (T-T t )  T = AT e t B. t 

In (2-b), all three constants have been treated as  adjustable para- 

meters ,  in contrast to the ear l ier  treatment for hydrogen isotopes 

[ Goodwin, 19621. 

Computational results include the root mean square (r. m. s .  ) 

absolute deviation in atm, and the r .  m. s .  relative deviation in per- 

cent, defined respectively by 

1 /2  
D = [ 1 (AP)2 /n ]  , 

where 

6 100 (P - P)/P c alc 

for a number n of datum points, and where A P is the difference - 
between calculated and experimental values. 

same as used by Mills and Grilly [ 19561 . Minima in D and A ,  

however, generally do not occur for the same se t  of parameters.  

Those corresponding to  the minimum relative deviation, A ,  a r e  

glven in the following results,  in contrast to those for  a minimum 

in D given by Mills and Grilly [ 19561. To examine detailed behavior 

The form of (3-a) is the 
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near the tr iple point, the average of absolute values of deviations f rom 

the f i rs t  six data of each investigator at the lowest pressures  a r e  given 

in percent in table 2 under the symbol 5 . 

3. Results 

Table 2 presents the sources of data and the number of points, 

- n, used in the least-squares determination of parameters,  2nd the 

maximum pressure of these data. 

deviations for each equation. 

different sets  of data a r e  compared. 

data. 

[ 19621 and of Bridgman [ 19351. 

synthetic data computed by (l), line 6. Line 8 includes, also, the 

data of Lahr and Eversole to  18, 000 atm [ Lahr and Eversole, 19621, 

whereas line 9 employs the latter data only. 

There follow the parameters and 

For hydrogen on lines 1 and 2, two 

Argon i s  examined with various 

Line 6 is for the mutually consistent data of Michels and Prins  

On line 7 (2) has been fitted to  

A comparison of relative deviations, A ,  in table 2 shows in 

general that (2) represents the data as well as, or ,  for some sub- 

stances, somewhat better than (1). 

hydrogen data on line 1, for  argon on line 6, for xenon, and for water. 

The improvement is clear for  the 

Equation (2) contains a te rm which may be compared with the 

int e rna l  pres  sur  e, 

for the gases through 0 

of (1) at T = Tt. 

2 

The ratio of these t e rms  

in table 2 is found to  be 

(ATt/Po) exp (-a/Tt) = 1. 2 f 0.1 

with the exception of xenon for which the ratio is 1. 70. 

For xenon, in table 3, the comparison of equations is  given at 

all points, since Michels and Prins found it necessary to f i t  the data 

by (1-a), independently, in two regions [ Michels and Prins, 19621. 
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Whereas (2)  gives a better average representation than (l), it does 

not overcome the systematic deviation seen in this table. 

Some of the results for argon a r e  presented graphically. 

ordinate of the figure 2 logarithrqic plot was computed with the inter-  

nal pressure of Michels and Prins  for (1-a), while the slope of the 

extrapolated straight line corresponds to their  values of - c [ Michels 

and Prins, 19621. Included for comparison a re  data of Bridgman 

[ 19351, of Lahr and Eversole [ 19621, and of Robinson [ 19541. As 

compared to the pressure at 360°K (near 18, 000 atm. ), given by (l),  

line 6 of table 2, the smootked function of Lahr and Eversole yields a 

value 7. 0% lower, and (2), line 6 of table 2, yields a value 3. 5% 

higher, the latter equation being shown by the dashed curve of figure 

1. 

The 

Figure 3 for argon i s  derived from (2), using parameters from 

line 6 of table 2. 

represents (1). 

4 i s  similar,  except that all  constants a r e  from line 8 of table 2. 

This type of difference plot provides a highly sensitive method for  

graphical examination of the precision of experimental data. 

The straight line represents (2).  The dashed line 

Datum points a r e  the same as on figure 2. Figure 

Table 4 for argon presents relative deviations of both equations 

f rom the data of Bridgman [ 19351; Lahr and Eversole [ 19621 ; and 

Michels and Prins  [ 19621, line 8 of table 2 to 18, 000 atmospheres. 

It is  seen that the two equations give comparable representations of 

these combined data to 18, 000 atm. 

Table 5 for  argon compares f i rs t  derivatives, s rdP /dT ,  of 

the two equations in te rms  of percent difference, 100(s2  - s l ) / s l  , in 

which subscripts refer to the equations. 

results for the consistent data of line 6 of table 2, whereas,  under (b), 

the results correspond to the apparently less  consistent data of line 8 

Under heading (a) a r e  given 

I 6 



of table 2. 

two equations a r e  comparable over the range of the data. 

For  each case, it is seen that the first derivatives of the 

Table 6 presents a comparison of the Simon constants recently 

determined by S. E. Babb, Jr. [ 19631, by a method of absolute 

deviations, with those determined in the present report  by a method 

of relative deviations. 

Since importance has been attached to the fact that (1) is a 

"reduced" form [Simon, 19373 , the  reduced constants for (2) a r e  

examined in table 7. 

the gases H 

The following ranges of values a r e  found for 

through N2 of table 2, 
2 

0. 04 4 0 . 4  (3 4 1 7 )  * l o 3  (0 .1  -1. 3) 10' 

4. Summarv and Conclusions 

The two parameters  of the reduced Simon equation have been 

determined for a number of gases and some metals by a uniform 

method which assumes that relative rather  than absolute uncertainties 

a r e  roughly constant in the experimental p ressures .  

Some current empirical and theoretical difficulties with the 

Simon equation, already mentioned, have led to examination of a new, 

empirical  equation with three parameters.  The latter equation is 

presented as  a result  of the remarkable equivalence to the Simon 

equation found here in the empirical representation of data, even 

though no simple mathematical equivalence between the equations is 

apparent. 
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It may be concluded that ( 1 )  will be preferred to (2)  for its 

simplicity and qualitative theoretical support, except where the latter 

gives improved empirical representation of data, or until such t ime 

as it receives some theoretical interpretation. Equation ( 2 ) ,  however, 

provides a sensitive difference method for graphical examination of 

the precision of data. 
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Table 1. Triple-point constants used. 

Substance "K Tt, 

n -H2 

2 n- D 

2 n -T 

Ne 

Ar  

Kr  

Xe 

N2 

O2 

c02 

H20 

Na 

K 

Hg 

13.947 

18.72 

20.61 

24. 544 

83.812 

115.745 

161.364 

63.146 

54.353 

216. 577 

354.75::: 

370.75t  

335. 65f 

234.32 f 

Pt, atm. 

0.071 

0.169 

0. 213 

0.427 

0.685 

0.724 

0.806 

0.124 

0. 0015 

5.11 

21, 260. ::: 

0.9684 t 
0.9684 7 

0 . 0  

Reference 

:: Triple-point ice VI t ice VI1 t liquid. 

t The melting-point of original data. 
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Table 3. Comparison of (1) and (2) for  Xenon 

T 

161. 554 
162.439 
163.375 
164.171 
167.154 

171.455 
176.978 
184.004 
191.144 
197.868 

203.000 
207.205 
211.142 
215.264 

P - 
5. 53 

27.49 
50.82 
70.95 

147.31 

259. 23 
405.89 
596. 25 
794.08 
984.49 

1132.20 
1255.18 
1371. 51 
1494. 53 

61 

0.33 
0.66 
0. 67 
0. 37 

-0.23 

-0. 51 
-0.64 
-0. 56 
-0.39 
-0.22 

-0.06 
0. 05 
0. 17 
0. 30 
0.37 

0. 00 
0. 39 
0 .45  
0. 19 

-0. 28 

-0.42 
-0.42 
-0. 26 
-0.09 

0. 02 

0. 09 
0.10 
0.11 
0.11 
0. 21 
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Table 5. Comparisons of s =dP/dT for Argon 

83.812 
83.900 
84. 000 
84. 500 
85. 000 

86 
87 
88 
90 

100 

110 
120 
140 
160 
180 

200 
240 
280 
320 
36 0 

t. 06 
t. 07 
t. 07 

t. 06 

t. 06 
t. 06 
t. 05 
t. 04 

t. 06 

-. 06 

-. 1 5  
-. 21 
-. 13 
t. 18 
t. 69 

t1 .35  
- - - - -  
e - - - -  

- - - - -  
- - - - -  

-2 .02 
-2 .00  
-1.97 
-1.83 
-1.70 

-1.44 
-1.21 
- . 9 8  
- . 58 
t . 8 0  

t1 .42  
t1. 61 
t1.34 
t o .  74 
t o .  1 0  

-0.47 
-1.30 
-1.71 
-1.76 
-1.54 

(a) Constants from line 6 of table 2. 

(b) Constants from line 8 of table 2. 
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Table 6. Comparison of Simon Constants 

of S .  E. Babb, Jr. [ 19631 with those of table 2. 

Substance Babb’(Po) table 2 (C)Babb/(c) table 2 

n- H 
2 

n-D2 

2 n-T 

1.1051 

1. 0443 

1. 0258 

Ne 1. 0395 

Av 
K r  

0.9992 

0.9983 

Xe 1. 0951 

N2 

O2 
co2y‘ 
H20* 

0.9996 

1. 0114 

1. 2421 

2.1180 

Na 1. 0355 

K 0.9975 

H g  X: 0. 6366 

0.9716 

0.9847 

0.9911 

0.9815 

0.9994 

1.0012 

0.9294 

1.0006 

0.9929 

0.8387 

0.6479 

0.9814 

1.0091 

1. 5487 

* Different data used by respective authors. 
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Table 7. Approximate reduced constants for equation (2) 

I 
I 

Line + Substance Q / T ~  (ATJP~) (BTJPJ - i o - 2  

0.445 6.45 1.194 

0. 294 5. 66 1.325 

0.235 3. 66 0. 752 

0.049 2. 99 0.704 

H2 

H2 

D2 

T2 

1 

2 

3 

4 

5 Ne 0.163 3. 41 

6 A r  0. 086 4. 07 

7 A r  0.107 4.20 

8 A r  0.286 5. 56 

9 A r  0.573 6. 89 

10  K r  0.043 3. 89 

11 Xe 0.440 7. 72 

0.344 

0.134 

0.130 

0.076 

0. 052 

0.120 

0 

0.111 16.87 1. 227 

0. 258 3021. 140. 
h2 

O2 

c02 

H2° 

12  

13 

14 

1 5  

0 -0.30 0.103 

1. 27 -0.09 . 0008 

16 Na 1. 03 - 586. 

17  K 0. 83 -175. 

+ Lines correspond to  table 2. 

6. 84 

2. 83 
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ARGON 

BRIDGWAN, 1935 

0 MICHELS+PRINS, 1962 

0 LAHR + EVERSOLE, 1962 

0 ROBINSON, 1954 

/ 

0.4 0.8 1.2 
(Th33.81) - 

Figure 2. Logarithmic plot of equation (1 )  for argon 
using the value P = 2087 atm. 
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